Prozesse selbstregulierten Lernens optimieren mittels digitaler Prompting-Techniken (PROMPT)

Basierend auf ersten Forschungsergebnissen rund um das SERNE -Selfregulation Widget haben wir zusammen mit Prof. Dr. Garvin Brod von der DIPF Abteilung Bildung und Entwicklung ein Projekt zur Unterstützung von selbstregulierten Lernenprozessen für Schüler*Innen im HomeSchooling einwerben können. Das PROMPT Projekt wird durch das Distr@l – Förderprogramm des Hessische Ministerium für Digitale Strategie und Entwicklung gefördert.

by Wanqij, CC BY-SA 4.0 via Wikimedia Commons
by Wanqij, CC BY-SA 4.0 via Wikimedia Commons

Unterstützung des Selbstreguliertes Lernen fällt insbesondere jüngeren Schülerinnen und Schülern schwer. Das Projekt PROMPT hat das Ziel, die Erkenntnisse aus der Forschung zur Verbesserung von selbstreguliertem Lernen in digitalen Lernumgebungen in die Anwendung bei Schulkindern zu überführen. Dieses Wissen soll möglichst breit zugänglich gemacht werden, sodass es Unternehmen der Bildungswirtschaft und Bildungsinstitutionen unmittelbar für neue Produkte oder zur Verbesserung bestehender Anwendungen nutzen können. Einen zentralen Aspekt dieses Wissenstransfers soll ein Prototyp einer kindgerechten Lernplanungs-App darstellen. Dieser Prototyp soll die wissenschaftlichen Erkenntnisse, die für eine Verbesserung des selbstregulierten Lernens mit Lern-Apps bei Schulkindern wichtig sind, praktisch umsetzen und illustrieren. Anbieter und Nutzer jeglicher Lern-Apps können auf dieses Instrument zurückgreifen und für ihre Zwecke adaptieren. Im Projekt erfolgt eine ausführliche, mehrschrittige Optimierungsforschung zur Gestaltung der Lernplanungs-App, sodass diese größtmögliche Effektivität besitzt. Diese Optimierung besteht zunächst aus einer Reihe von kleineren Randomized Controlled Trials (RCTs), in denen die verschiedenen inhaltlichen Komponenten der App (Lernzielformulierung, Lernzielmotivation, Wenn-Dann-Plan zum Umgang mit Hindernissen bei der Zielerreichung, Überwachung des Lernfortschritts) systematisch variiert werden, um zu überprüfen, welche Kombination von Komponenten die größtmögliche Effektivität hat. Die vielversprechendsten Kombinationen werden im Anschluss in einem großen RCT in einer repräsentativen Stichprobe überprüft, um die Effektivität des Prototyps wissenschaftlich belastbar zu validieren. Abschließend wird die finale Version des Prototyps für die breite Nutzbarkeit und Zugänglichkeit für Unternehmen und Bildungsinstitutionen aufbereitet und als Open Educational Resource verbreitet.

Share this: