

The present work was submitted to Lehr- und Forschungsgebiet Educational
Technologies at DIPF

Learning the impact of Learning
Analytics with an authentic dataset

Bachelor-Thesis

Presented by

Leute, Egon

6553108

First examiner: Prof. Dr. Hendrik Drachsler

Second examiner: Prof. Dr. Detlef Krömker

Supervisors: Prof. Dr. Hendrik Drachsler

Frankfurt, August 12, 2019

Erklärung
Hiermit versichere ich, dass ich diese Arbeit selbstständig verfasst und keine anderen als die
angegebenen Quellen und Hilfsmittel benutzt habe.

I hereby declare that I have created this work completely on my own and used no other sources
or tools than the ones listed.

Frankfurt, August 12, 2019 Full Name

Acknowledgments

My deepest gratitude goes to my fiance for always supporting and motivating me in the past.
Without her this thesis would have never been finished.

I would also like to thank Prof. Dr. Hendrik Drachsler and Prof. Dr. Detlef Krömker for support-
ing this thesis, without their help this journey would have been extremely hard.

And finally, a big shout-out to all of my friends and my colleagues at the Goethe University and
Eva Kaufholz-Soldat from the Schreibzentrum am Riedberg.

v

Abstract

Nowadays, data sets of the interactions of users and their corresponding demographic data are
becoming more and more valuable for companies and academic institutions like universities
when optimizing their key performance indicators. Whether it is to develop a model to predict
the optimal learning path for a student or to sell customers additional products, data sets to
train these models are in high demand. Despite the importance and need of big data sets it still
has not become apparent to every decision maker how crucial data sets like these are for the
future success of their operations.

The objective of this thesis is to demonstrate the use of a data set, gathered from the virtual
learning environment of a distance learning university, by answering a selection of questions in
Learning Analytics. Therefore, a real world data set was analyzed and the selected questions
were answered by using state-of-the-art machine learning algorithms.

Contents

1 Introduction 1
1.1 Research Questions . 1
1.2 Outline . 2

2 The Open University Learning Analytics Dataset 3
2.1 Data set schema . 3
2.2 Table content . 4
2.3 Limitations . 5
2.4 Design for Goethe University Learning Analytics dataset 5

3 State of research 7
3.1 Linking Students’ Timing of Engagement to Learning Design and Academic Per-

formance [1] . 7
3.2 Student Success Prediction and the Trade-Off between Big Data and Data Mini-

mization [4] . 7
3.3 OULAD MOOC Dropout and Result Prediction using Ensemble, Deep Learning

and Regression Techniques [5] . 8
3.4 Relation to this thesis . 8

4 Machine Learning Algorithms 9
4.1 K nearest neighbors - KNN . 9
4.2 Decision Tree . 10
4.3 K-means . 10

5 Jupyter Notebook 13
5.1 Import Data . 14
5.2 Is there a link between the time of enrollment in a course and the final exam

results? . 17
5.3 Cause higher exercise points higher final grades? 20
5.4 Are there parallels between the students interactions with course materials and

their understandings of the subject matter? . 27
5.5 How far in advance can we predict which students are destined to fail their final

exam? . 37

6 Conclusion 45
6.1 Summary . 45

ix

6.2 Result . 45

7 Outlook 47

8 Glossary 49

List of Figures 51

Bibliography 53

1 Introduction

With an abundance of data, that can be gathered from Learning Environments, docents are fac-
ing challenges in benefiting from these kinds of data to improve their courses and to help their
students in understanding complex issues with an improved pace. With better understanding
of the available data, arising problems for students can be determined more in advance and
acted to accordingly.

Previous studies [1] have shown that there are strong links in the interaction of students with Vir-
tual Learning Environments (VLE) and academic achievements. But the question that remains
is, how we can use these findings in actually improving education and to allocate valuable re-
sources to those who would benefit most from it. To find these students it is essential to predict
in an early stage of the semester which student should be targeted with additional measures.
In the last research question, for the first time in learning analytics, a model will be calculated
and evaluated that aims to serve this purpose.

With the rise of more capable processors and architectures that allow for processing large
amounts of data in a reasonable time, scientists around the globe try to make use of that vast
amount of information to answer the most urging questions in Learning Analytics [2]. Thanks
to publicly available data sets of the interactions of students with VLEs we have enough data to
develop and prove strategies that encounter these issues.

The goal of this bachelor thesis is to design use cases that show how to benefit from data
that was gathered in a Virtual Learning Environment. For this task the “Open University Learn-
ing Analytics datasets” or short OULAD was chosen, because it provides information about
the interactions of the students with the VLE, demographic data and data about the students’
assessments.

1.1 Research Questions
This thesis searches for answers to the following questions:

1. Is there a link between the time of enrollment in a course and the final exam results?

2. Is there a relationship between higher exercise points and higher final grades?

3. Are there parallels between the students interactions with course materials and their un-
derstandings of the subject matter?

4. How far in advance can we predict which students are likely to fail their final exam?

1

2 Chapter 1. Introduction

These questions will be answered in a format that can be used as seminar material to edu-
cate university staff about the importance of gathering data in a VLE.

1.2 Outline
This Thesis is structured as follows: Chapter 2 will provide an overview of the data set used
in this thesis and shows the possibilities and limitations of the data set, Chapter 3 provides
an overview of papers that either worked with the same data set or had similar goals like this
thesis. Following, Chapter 4 presents describes the machine learning algorithms that were
used to work the data set. Chapter 5 contains the Jupyter Notebook which aims to lecture
university staff in the importance of learning analytics data sets. Finally, Chapter 6 provides a
conclusion on the findings of this work on the OULAD and what can be done in the future.

2 The Open University Learning Analyt-
ics Dataset

Since the integration of virtual learning environments into the higher education sector, univer-
sities are able to collect huge amounts of data, showing how students interact with a plat-
form and the designed course material. The data set can be downloaded from the website
https://analyse.kmi.open.ac.uk/open_dataset. Making use of a data set like this is the aim of
this thesis. But first a deeper understanding of the data set is needed to know how to connect
the different tables and to see the limitations of a data set like the OULAD.

2.1 Data set schema
Figure 2.1 visualizes the connections between the different tables and on which keys they are
connected with each other. Information that is collected in the VLE during the semester like
click data is colored in orange, information about the modules, tests and content in green and
last demographic information about the students in blue.

3

https://analyse.kmi.open.ac.uk/open_dataset#description

4 Chapter 2. The Open University Learning Analytics Dataset

studentAssessment
id_student id_assessment date_submitted is_banked score

studentRegistration
code_module code_presentation id_student date_registration date_unregistration

studentVle
id_site id_student code_module code_presentation date sum_click

assessments
id_assessments code_module code_presentation assessment_type date

courses
code_module code_presentation

vle
id_site code_module code_presentation activity_type week_from week_to

studentInfo
code_module code_presentation id_student gender imd_band highest_education

age_band num_of_prev_attempts studied_credits region disability final_result

Figure 2.1: Data base schema

2.2 Table content
For privacy reasons private data of students like age was transformed to labeled data to make
it impossible to trace back the date of birth for a specific student by using other public available
information [3]
The tables shown in Figure 2.1 contain the following information:

• Table studentInfo:
Contains demographic information about the students. Consists of around 32.000 rows

• Table courses:
lists all module_code and module_presentation combinations present in the data set

2.3. Limitations 5

• Table studentRegistration:
When was the time of enrollment of a student into a course in relation to semester start

• Table assessments:
This table contains information about when and which type of assessment was offered.
There are three types of assessments available TMA, CMA and Exam.

• Table studentAssessment:
Every row in this table represents a student’s assessment, when it was submitted and
what score was achieved by the student

• Table studentVle:
Aggregated to a daily base and website this table holds the information on the interactions
of each student with the virtual learning environment

• Table vle:
Contains information about the web sites available in the vle and in which time range they
were present in the vle

2.3 Limitations
From the description above the limitations of the OULAD become already more apparent. It will
not be possible to conduct research like in the paper mentioned in section 2.1 by Bart Rienties
et. al because the interactions are not on the same fine-grained scale like in the paper on
an hour base rather on a daily base. Another limitation results of the anonymization and the
relative short time span of the data set. It will not be possible to conduct research on how
students developed over a span of multiple semesters.

2.4 Design for Goethe University Learning Analytics
dataset

A data schema like in the OULAD, where clicks are aggregated per day, reduces storage space
and makes a data base more performant. “However, the actual behavior of students occurs
on much finer, hours per hour or even second by second level” (Rienties, 2018). Therefore, to
not be limited in analytics, an optimal data storage method should hold the raw data gathered
by the VLE to ensure that every activity can be replicated how it happened at the time it took
place. It should also be possible to produce a time series for each student from the time they
entered university to the time they graduated, to evaluate how they managed different obstacles
and compare this to other students. By doing so research on the timing of interactions with the
course material or the time of day the interaction took place can be conducted.

3 State of research

This chapter aims to inform about different studies that have been conducted on the OULAD,
what their goals were and how they are connected to this thesis.

3.1 Linking Students’ Timing of Engagement to Learning
Design and Academic Performance [1]

With their research on students’ timing of engagement and its relation to Learning Design,
Bart Rienties, Michal Huptych and Quan Nguyen examine how the timing of engagement can
predict if a student is likely to fail their final exam. They analysed how close students stick to
the learning path that was designed by the instructor of the module and how close the students
follow this path. They discovered that outperforming students tend to study more in advance
while students that will fail their final exam spend more time on catching up with the course
material. The data set used to conduct this study involves the behavior of 380 students in the
two semesters in 2015 and 2016. In chapter 3 other factors that are correlated to a student’s
success and how to detect outperforming students by clustering their clicks in the VLE are
demonstrated.

3.2 Student Success Prediction and the Trade-Off between
Big Data and Data Minimization [4]

Hendrik Heuer and Andreas Breiter from the University of Bremen try to minimize the infor-
mation needed to still make valuable predictions on fails and passes of students’ on their final
exams. The goal is to allocate data that doesn’t need to be on a fine-grained scale, like the
clicks on the VLE which they binarize, to still make accurate predictions and to make it easier
to protect private and sensitive information of the students. According to the authors they can
make very accurate predictions even without sensitive information. Following their work and
results in this thesis, it will be tested at which point during a semester demographic informa-
tion a therefore less sensitive information becomes less relevant in predicting the outcome of a
semester.

7

8 Chapter 3. State of research

3.3 OULAD MOOC Dropout and Result Prediction using
Ensemble, Deep Learning and Regression Techniques
[5]

In contrast to the previous paper, Nikhil Indrashekhar Jha, Ioana Ghergulescu, and Arghir-
Nicolae Moldovan use the whole OULAD to improve predictions of dropout and result predic-
tion performance. For Pass/Fail predictions, including all attributes into the training data like
demographics, assessments and VLE interactions, they can achieve very high AUC scores of
up to 0.93.

3.4 Relation to this thesis
Like in the paper “Linking Students’ Timing of Engagement to Learning Design and Academic
Performance” in chapter 5.2 the time of enrollment of students will be examined and how it is
related to the students’ performance at the final exam at the end of the semester.

In chapter 5.5. we will see like in the paper “Student Success Prediction and the Trade-
Off between Big Data and Data Minimization” that only a limited amount of features is needed
to make successful predictions about which students will pass their exams and who will
fail. In addition to the findings on Data Minimization, this thesis will contribute on how data
minimization can look like when predicting at an earlier stage of the semester opposed to at
the end like in the paper of Hendrik Heuer and Andreas Breiter.

The paper “OULAD MOOC Dropout and Result Prediction using Ensemble, Deep Learn-
ing and Regression Techniques” shows benchmarks on what has already been achieved when
forecasting students’ fail/pass rate on this data set. This thesis will expand the knowledge
on how forecasting accuracies change when the predictions are not done at the end of the
semester.

4 Machine Learning Algorithms

In this chapter I will describe the three machine learning algorithms that were used later in the
Jupyter Notebook to examine the data sets. All machine learning algorithms were imported
from the library scikit-learn [6].

4.1 K nearest neighbors - KNN
K nearest neighbors needs a numeric labeled data set as target variable, where all labels have
to be integers and a numerical data set as input variables, where the input variables can be
either integers or floats. Around 70 % of the data set should be used as training data and the
remaining 30 % are used to evaluate the trained model. The KNN algorithm measures the
distance of each data point in an m-dimensional space (where m is the number of variables in
the data set) to a target variable. The most common label is then used to predict the most likely
label.

9

10 Chapter 4. Machine Learning Algorithms

x

y

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

K = 4

KNN visualization

Figure 4.1: K nearest neighbors with K = 4 and 2 variables x and y

4.2 Decision Tree
The Decision Tree Algorithm needs as well as the KNN algorithm, labeled target variables and
numeric input data. This algorithm forms a decision tree where in each node binary questions
are asked on the variables that will divide the data set the most. With the algorithm provided
by scikit-learn the generated decision tree can even be returned. Another useful factor when
applying this algorithm is that the feature importance can be returned. Feature importance
shows which variables were more decisive for dividing the data set.

4.3 K-means
In contrast to the KNN and decision tree algorithm the K-means algorithm does not provide
a prediction for a data point, it tries to form K different clusters (where K is a natural number
greater than 1). The error rate for each cluster is calculated by measuring the mean distance
of each data point to it’s center squared. To determine the optimal K the combined error rate of
each K is plotted against K and take the K that is closest to the inflection point.

4.3. K-means 11

x

y

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Cluster 2

Cluster 1

K Means visualization

Figure 4.2: K-Means with K = 2 and two variables x and y

5 Jupyter Notebook

In this section the research questions, presented in chapter 1.1, will be answered using the
programming language Python and the integrated development environment Jupyter Notebook.
The following libraries are nedded to execute the code:

• Pandas [7]

• numpy [8]

• seaborn [9]

• Math

• sklearn [6]

• matplotlib [10]

13

5.1 Import Data

Download Data from https://analyse.kmi.open.ac.uk/open_dataset and save it to the same folder
as this Jupyter Notebook. After this task was completed successfully we will import the Library
Pandas, which helps to handle huge data sets more easily and performs vector operations with
high speed.

In [1]: import pandas as pd

studentRegistration = \
pd.read_csv(filepath_or_buffer='..//..//OULAD//studentRegistration.csv', sep=',')
assessments = \
pd.read_csv(filepath_or_buffer='..//..//OULAD//assessments.csv', sep=',')
courses = \
pd.read_csv(filepath_or_buffer='..//..//OULAD//courses.csv', sep=',')
studentAssessment = \
pd.read_csv(filepath_or_buffer='..//..//OULAD//studentAssessment.csv', sep=',')
studentRegistration = \
pd.read_csv(filepath_or_buffer='..//..//OULAD//studentRegistration.csv', sep=',')
studentVle = \
pd.read_csv(filepath_or_buffer='..//..//OULAD//studentVle.csv', sep=',')
vle = \
pd.read_csv(filepath_or_buffer='..//..//OULAD//vle.csv', sep=',')
studentInfo = \
pd.read_csv(filepath_or_buffer='..//..//OULAD//studentInfo.csv', sep=',')

After importing all tables successfully into our Notebook, we can look into a data frame by
typing DataFrame_name.head(n), where n is the number of lines shown.

In [2]: studentInfo.head(5)

Out[2]: code_module code_presentation id_student gender region \
0 AAA 2013J 11391 M East Anglian Region
1 AAA 2013J 28400 F Scotland
2 AAA 2013J 30268 F North Western Region
3 AAA 2013J 31604 F South East Region
4 AAA 2013J 32885 F West Midlands Region

highest_education imd_band age_band num_of_prev_attempts \
0 HE Qualification 90-100% 55<= 0
1 HE Qualification 20-30% 35-55 0
2 A Level or Equivalent 30-40% 35-55 0
3 A Level or Equivalent 50-60% 35-55 0
4 Lower Than A Level 50-60% 0-35 0

studied_credits disability final_result
0 240 N Pass
1 60 N Pass

14 Chapter 5. Jupyter Notebook

2 60 Y Withdrawn
3 60 N Pass
4 60 N Pass

In [3]: assessments.head(5)

Out[3]: code_module code_presentation id_assessment assessment_type date weight
0 AAA 2013J 1752 TMA 19.0 10.0
1 AAA 2013J 1753 TMA 54.0 20.0
2 AAA 2013J 1754 TMA 117.0 20.0
3 AAA 2013J 1755 TMA 166.0 20.0
4 AAA 2013J 1756 TMA 215.0 30.0

In [4]: studentRegistration.head(5)

Out[4]: code_module code_presentation id_student date_registration \
0 AAA 2013J 11391 -159.0
1 AAA 2013J 28400 -53.0
2 AAA 2013J 30268 -92.0
3 AAA 2013J 31604 -52.0
4 AAA 2013J 32885 -176.0

date_unregistration
0 NaN
1 NaN
2 12.0
3 NaN
4 NaN

In [5]: courses.head(5)

Out[5]: code_module code_presentation module_presentation_length
0 AAA 2013J 268
1 AAA 2014J 269
2 BBB 2013J 268
3 BBB 2014J 262
4 BBB 2013B 240

In [6]: studentAssessment.head(5)

Out[6]: id_assessment id_student date_submitted is_banked score
0 1752 11391 18 0 78.0
1 1752 28400 22 0 70.0
2 1752 31604 17 0 72.0
3 1752 32885 26 0 69.0
4 1752 38053 19 0 79.0

In [7]: studentVle.head(5)

5.1. Import Data 15

Out[7]: code_module code_presentation id_student id_site date sum_click
0 AAA 2013J 28400 546652 -10 4
1 AAA 2013J 28400 546652 -10 1
2 AAA 2013J 28400 546652 -10 1
3 AAA 2013J 28400 546614 -10 11
4 AAA 2013J 28400 546714 -10 1

In [8]: vle.head(5)

Out[8]: id_site code_module code_presentation activity_type week_from week_to
0 546943 AAA 2013J resource NaN NaN
1 546712 AAA 2013J oucontent NaN NaN
2 546998 AAA 2013J resource NaN NaN
3 546888 AAA 2013J url NaN NaN
4 547035 AAA 2013J resource NaN NaN

After we have explored our dataset a bit, we can start to make the first assumptions and then
try to prove them with the dataset.

16 Chapter 5. Jupyter Notebook

5.2 Is there a link between the time of enrollment in a course and the
final exam results?

To verify if there is a correlation between time_of_enrollment and exam_score, we will first need
to prepare a data frame, where every row represents a student, module combination with the two
variables time_of_enrollment in days and final_exam_score. Correlations can be very helpful in
finding links between different variables, as they’re easy to calculate, but should be treated with
caution as they can be misleading.

First we will merge the two data frames assessments and studentAssessment on the key
id_assessment to connect the assessments of the students to the modules and different presen-
tations, by doing so we can split them into different groups and analyze them separately.

In [9]: exam_assessments = pd.merge(assessments, studentAssessment, on='id_assessment')
exam_assessments = exam_assessments[exam_assessments['assessment_type'] == 'Exam']
exam_assessments.head()

Out[9]: code_module code_presentation id_assessment assessment_type date \
52923 CCC 2014B 24290 Exam NaN
52924 CCC 2014B 24290 Exam NaN
52925 CCC 2014B 24290 Exam NaN
52926 CCC 2014B 24290 Exam NaN
52927 CCC 2014B 24290 Exam NaN

weight id_student date_submitted is_banked score
52923 100.0 558914 230 0 32.0
52924 100.0 559706 234 0 78.0
52925 100.0 559770 230 0 54.0
52926 100.0 560114 230 0 64.0
52927 100.0 560311 234 0 100.0

Now we merge our new data frame with the table studentRegistration to get the information
when a student enrolled into the course

In [10]: exam_assessments_with_registration_date = \
pd.merge(exam_assessments, studentRegistration, \
on=['code_module', 'code_presentation', 'id_student'], \
how='inner')

exam_assessments_with_registration_date.head()

Out[10]: code_module code_presentation id_assessment assessment_type date weight \
0 CCC 2014B 24290 Exam NaN 100.0
1 CCC 2014B 24290 Exam NaN 100.0
2 CCC 2014B 24290 Exam NaN 100.0
3 CCC 2014B 24290 Exam NaN 100.0
4 CCC 2014B 24290 Exam NaN 100.0

id_student date_submitted is_banked score date_registration \
0 558914 230 0 32.0 -74.0

5.2. Is there a link between the time of enrollment in a course and the final exam results? 17

1 559706 234 0 78.0 -22.0
2 559770 230 0 54.0 -22.0
3 560114 230 0 64.0 -281.0
4 560311 234 0 100.0 -28.0

date_unregistration
0 NaN
1 NaN
2 NaN
3 NaN
4 NaN

After aggregating the cells we can investigate if there exists a correlation between
time_of_enrolement and the final exam score. With df.corr() we can calculate the Pearson
product-moment correlation coefficient (PPMCC) which returns a value between -1 and +1. -1
Meaning total negative correlation, +1 total positive correlation and 0 no linear correlation. The
calculation of the PPMCC is shown below.

In [11]: from IPython.display import Math
Math(r'\text{PPMCC} \\ \rho(X,Y) = \frac{cov(X,Y)}{\sigma_X \cdot \sigma_Y}\

\\ cov \text{ is the covariance} \\ \
\sigma_Y \text{ is the standard deviation of } Y \
\\ \sigma_X \text{ is the standard deviation of } X')

Out[11]:
PPMCC

ρ(X, Y) =
cov(X, Y)

σX · σY
cov is the covariance
σY is the standard deviation of Y
σX is the standard deviation of X

In [12]: exam_assessments_with_registration_date[['score', 'date_registration']].corr()

Out[12]: score date_registration
score 1.000000 0.024529
date_registration 0.024529 1.000000

From the data frame above we can read that there is close to no correlation, meaning that it is
very likely that a prediction for exam results based on the time of enrollment will not be successful.
With seaborn, a library for visualizations, we can print a scattered plot with a regression line that
fits the data points best.

In [13]: import seaborn as sns
sns.lmplot(x='date_registration',y='score',\

data=exam_assessments_with_registration_date,\
scatter_kws={'alpha':0.07},\
fit_reg=True, line_kws={'color': 'red'}).set\
(xlabel='time of enrolement relative to course start', \
ylabel='final exam score');

18 Chapter 5. Jupyter Notebook

In the plot above we can see that the regression line is almost vertical because of the low
PPMCC. Also there does not seem to be a pattern which shows that there might be a correlation
between time_of_enrollment and final_exam_score

Conclusion

As expected from the low PPMCC we do not get a clear picture for our prediction, because there
seems to be no connection between the time of enrollment and exam results, since a coefficient
of 0.024529 is considered random. However this is still helpful because we know now that we do
not have consider time of enrollment any more when it comes to predictions about the final exam.
In the next examinations we will try to combine other variables with the final exam points to find a
pair with a higher coefficient.

5.2. Is there a link between the time of enrollment in a course and the final exam results? 19

5.3 Is there a relationship between higher exercise points and higher
final grades?

Next we want to examine if the exercise points gathered by the students during the semester are
a better method to predict the likelihood of a student succeeding the course. In the first step
we will create another data frame with the same key combination (id_student, code_module),
but now with the new variables sore_exam and score_non_exam. Where score_non_exam are
assessments that get evaluated by a tutor or a computer and take place regularly during the
semester.

In [14]: non_exam_assessments = pd.merge(assessments, studentAssessment, on='id_assessment')
non_exam_assessments = \
non_exam_assessments[non_exam_assessments.assessment_type != 'Exam']
grouped_assessments = non_exam_assessments[['id_student', 'code_module', \

'code_presentation', 'score']].groupby(['id_student', 'code_module', \
'code_presentation']).sum().reset_index()

exam_assessments = pd.merge(assessments, studentAssessment, on='id_assessment')
exam_assessments = exam_assessments[exam_assessments.assessment_type == 'Exam']
grouped_exam_assessments = exam_assessments[['id_student', 'code_module', \

'code_presentation', 'score']].groupby(['id_student', 'code_module', \
'code_presentation']).sum().reset_index()

assessment_eval = \
pd.merge(grouped_exam_assessments[['id_student', 'code_module', \

'code_presentation', 'score']], \
grouped_assessments[['id_student', 'code_module',\

'code_presentation', 'score']], \
on=['id_student', 'code_module', 'code_presentation'], \

suffixes=('_exam', '_non_exam'))

assessment_eval.head()

Out[14]: id_student code_module code_presentation score_exam score_non_exam
0 23698 CCC 2014J 80.0 590.0
1 24213 DDD 2014B 58.0 476.0
2 27116 CCC 2014J 96.0 744.0
3 28046 DDD 2013J 40.0 306.0
4 28787 CCC 2014J 44.0 224.0

In [15]: assessment_eval[['score_exam', 'score_non_exam']].corr()

Out[15]: score_exam score_non_exam
score_exam 1.000000 0.270082
score_non_exam 0.270082 1.000000

In the cell above we can see that the PPMCC is significantly higher, which can be interpreted in
a way that these two variables have a much higher significance than the others in our test before.

20 Chapter 5. Jupyter Notebook

But 0.270082 is still not a remarkable strong correlation coefficient, but can be interpreted as a hint
that we are on the right path. Now we want to plot the scatter plot to visualize the dependencies
of the variables.

In [16]: sns.lmplot(x='score_exam',y='score_non_exam',data=assessment_eval,\
fit_reg=True, scatter_kws={'alpha':0.07}, \
line_kws={'color': 'red'}).set(xlabel='score final exam',
ylabel='score exercises');

Figure 5.1: Regression between score exercise and score final exam

After plotting, we can confirm that there is also a visual correlation between exercise points
and exam points, as we can see the points seem to get higher on the x axis the higher the y
value is. Now we can look into the different modules and explore if there is any difference. With
‘assessment_eval.code_module.unique()’ we get a list of the distinct code_modules over which
we will iterate to get results from each module. First, we will take a look at the correlation matrix
and then print out the scatter plot.

In [17]: corr_module = pd.DataFrame()
module_list = list()

5.3. Cause higher exercise points higher final grades? 21

for module in assessment_eval['code_module'].unique():
module_list += [module, module]
corr_module = pd.concat([assessment_eval[['score_exam', 'score_non_exam']]\

[assessment_eval.code_module == module].corr(), corr_module])
corr_module['module'] = module_list[::-1]
corr_module = corr_module.set_index(['module', corr_module.index])
corr_module

Out[17]: score_exam score_non_exam
module
DDD score_exam 1.000000 0.134523

score_non_exam 0.134523 1.000000
CCC score_exam 1.000000 0.513080

score_non_exam 0.513080 1.000000

In the output above, we can see that the PPMCC diverges notably in the two modules. This is
a very important finding since it can have two meanings. Either in module CCC exercise are more
connected to the final exam and therefore are a better indicator if a student passes or not than in
module DDD, or we have to deal with an effect were correlations can disappear when a dataset is
aggregated. After seeing this differences, we should definitely examine module DDD more closely.
To accomplish this, we will print out a scatter plot of Module CCC and DDD to see if there are any
visual differences.

In [18]: for code_module in assessment_eval.code_module.unique():
scatter_plot = sns.lmplot(x='score_exam',y='score_non_exam', \

scatter_kws={'alpha':0.1}, \
data=assessment_eval[assessment_eval.code_module==code_module],\
fit_reg=True, \

line_kws={'color': 'red'}).set(xlabel='score final exam',\
ylabel='score exercises')

fig = scatter_plot.fig
fig.suptitle("Module: {}".format(code_module), fontsize=12)

22 Chapter 5. Jupyter Notebook

Figure 5.2: Regression between score exercise and score final exam for module CCC

5.3. Cause higher exercise points higher final grades? 23

Figure 5.3: Regression between score exercise and score final exam for module DDD

As expected the visual representation is different in both modules. In the module DDD we can
see 2 clusters, one bigger in the bottom part of the chart and a smaller one in the upper half. If
data points are scattered like in the module DDD graph, we have to ask our self why there seem to
be different clusters and how we can separate them to improve our correlation coefficient. Since
we know from the data set description, that the data was accumulated over several semesters we
can assume that these clusters formed because something changed in the course. To separate
the different groups visually, we can plot the data again with the same code, but this time we will
also specify the variable hue which assigns a different color to each semester.

In [19]: scatter_plot = \
sns.lmplot(x='score_exam',y='score_non_exam', scatter_kws={'alpha':0.1},\

data=assessment_eval[(assessment_eval.code_module=='DDD')],\
hue='code_presentation').set(xlabel='score final exam', \

ylabel='score exercises')
fig = scatter_plot.fig
fig.suptitle("Module: {}".format(code_module), fontsize=12)

Out[19]: Text(0.5, 0.98, 'Module: DDD')

24 Chapter 5. Jupyter Notebook

Figure 5.4: Regression between score exercise and score final exam for module DDD separated
by semester

In the scatter plot above, we could identify the reason of the different clusters. In the Semester
2013B it looks like the maximum amount of points that could be scored during the semester was
higher. This tells us that we have to norm the exercise points (e.g. calculate percentage of points
reached) of the students to get better predictions. Finally we want to calculate the PPMCC of the
different semesters

In [20]: corr_DDD_presentation = pd.DataFrame()
presentation_list = list()
for presentation in assessment_eval[(assessment_eval.code_module == 'DDD')]\

['code_presentation'].unique():
presentation_list += [presentation, presentation]
corr_DDD_presentation = \

pd.concat([assessment_eval[['score_exam', 'score_non_exam']]\
[(assessment_eval.code_module == 'DDD') & \
(assessment_eval.code_presentation == presentation)].corr(),

corr_DDD_presentation])
corr_DDD_presentation['presentation'] = presentation_list[::-1]
corr_DDD_presentation = corr_DDD_presentation.set_index(['presentation', \

5.3. Cause higher exercise points higher final grades? 25

corr_DDD_presentation.index])
corr_DDD_presentation

Out[20]: score_exam score_non_exam
presentation
2013B score_exam 1.000000 0.658489

score_non_exam 0.658489 1.000000
2014J score_exam 1.000000 0.637596

score_non_exam 0.637596 1.000000
2013J score_exam 1.000000 0.618482

score_non_exam 0.618482 1.000000
2014B score_exam 1.000000 0.635166

score_non_exam 0.635166 1.000000

In the table above we the PPMCC was calculated for each semester. As expected we get a
higher PPMCC when we separate the different semesters. With a PPMCC being around 0.63 we
have found a statistical significant correlation.

Conclusion

When we examined the two modules that use rated exercises, CCC and DDD, we found that
both modules have a PPMCC over 0.5. This means that exercise points are a statistical relevant
estimator to predict the final exam points of a student. The exercise points of a student could also
be used to find students who need additional material or courses to pass a module.

26 Chapter 5. Jupyter Notebook

5.4 Are there parallels between the students interactions with course
materials and their understandings of the subject matter?

From the previous analysis we could conclude that there is a correlation between exercise points
and exam points. However why do certain students seem to have a better understanding of the
exercises and are therefore better in the final exams? To investigate this circumstance we want to
explore the click data of the students in the virtual learning environment (vle) and try to find groups
that have a similar behavior. Ideally these groups will also have similarities in their mean exercise
points or pass rate like the cluster they were assigned to. For building groups and classification
tasks, K-means is a very common algorithm that helps to find clusters in a big data set. K-Means
is an algorithm that can be best imagined in a 3-dimensional space, where it places K spheres
around the data points. K is the number of clusters that fit the dataset, where K is an integer greater
than zero. The algorithm places the center and radius of the spheres to reduce the combined
distance of each data point to it’s sphere center to a minimum. Clustering over so many variables
will result in a large number of detailed clusters, which will be more exact than they need to be
since we’re more interested in the bigger picture. Why reducing the number of variable results in
better clusters can be imagined best when we think about a weekend where we expect students
to study and take time off to relax. We do not want to put a student who studied more on Saturday
than on Sunday in a different cluster than a student that did it the other way around. This means
we want to put students that study more in a similar day range (like on a weekend) in the same
cluster. To reduce the selectivity of the K-means algorithm we will need to prepare the data set
accordingly. A common practice to reduce the dimensionality and selectivity of a data set is the
principal component analysis (pca). We can specify the numbers of components onto whom we
want to reduce our data set to. The number of components should be greater than zero and
smaller than the number of features we have (in our example the features are the days). In short
the pca will take all features, find correlations among them and compute them to new features that
have a greater entropy. Since we can determine the number of components (new features) we
can control the dimensionality of our new data set. Our first goal will be to aggregate the data to a
table where we have a column for each day of the semester and one row per student and course.

In [21]: vle_interactions = pd.merge(studentVle, vle[['id_site', 'code_module', \
'code_presentation', 'activity_type']], \
on=['code_module', 'code_presentation', 'id_site'])

First we merge the two tables vle and studentVle, to connect the information of the vle with the
click events from the students

In [22]: vle_interactions.head()

Out[22]: code_module code_presentation id_student id_site date sum_click \
0 AAA 2013J 28400 546652 -10 4
1 AAA 2013J 28400 546652 -10 1
2 AAA 2013J 28400 546652 -10 1
3 AAA 2013J 28400 546652 -10 8
4 AAA 2013J 30268 546652 -10 3

activity_type
0 forumng

5.4. Are there parallels between the students interactions with course materials and their
understandings of the subject matter? 27

1 forumng
2 forumng
3 forumng
4 forumng

In [23]: interactions_agg_student_module_day = vle_interactions[['code_module', \
'code_presentation', 'id_student', 'date', 'sum_click']].\
groupby(['code_module', 'code_presentation', 'id_student', 'date']).sum().\
reset_index()

Below we have a table with the total number of clicks per student per day per module per
semester

In [24]: interactions_agg_student_module_day.head()

Out[24]: code_module code_presentation id_student date sum_click
0 AAA 2013J 11391 -5 98
1 AAA 2013J 11391 0 49
2 AAA 2013J 11391 1 127
3 AAA 2013J 11391 2 4
4 AAA 2013J 11391 6 3

Now we need to fill in the days where the students were not active. If we would iterate with
a for loop over the data frame it would take quite some time to compute this simple operation,
reason being the large table we have created. Thats why it’s more efficient to us the operation
merge. We will create a dummy data frame with all possible days on whom we will merge our
interactions_agg_student_module_day fill all empty values with zero.

In [25]: df_days = pd.DataFrame({'date': [day for day in range(-100,401)], 'dummy': 1})
df_unique_student_module_presentation = \
interactions_agg_student_module_day[['code_module', 'code_presentation', \

'id_student']].drop_duplicates()
df_unique_student_module_presentation['dummy'] = 1
df_unique_student_module_presentation = \
pd.merge(df_days, df_unique_student_module_presentation, on='dummy', how='left')
del df_unique_student_module_presentation['dummy']
df_unique_student_module_presentation.ffill()
df_unique_student_module_presentation = \
pd.merge(df_unique_student_module_presentation, interactions_agg_student_module_day,\

on=['code_module', 'code_presentation', 'id_student', 'date'], how='left')
df_unique_student_module_presentation['sum_click'] = \
df_unique_student_module_presentation['sum_click'].fillna(0)

Since not all modules have the same presentation length, we need to cut off the dummy days
that are not between start and end of the module

In [26]: for module in df_unique_student_module_presentation.code_module.unique():
for presentation in df_unique_student_module_presentation\
[df_unique_student_module_presentation.code_module == module].\

28 Chapter 5. Jupyter Notebook

code_presentation.unique():
min_date = \
interactions_agg_student_module_day\
[(interactions_agg_student_module_day.code_presentation == presentation) & \
(interactions_agg_student_module_day.code_module == module)]['date'].min()

max_date = \
interactions_agg_student_module_day\
[(interactions_agg_student_module_day.code_presentation == presentation) & \
(interactions_agg_student_module_day.code_module == module)]['date'].max()

df_unique_student_module_presentation = \
df_unique_student_module_presentation\
[~((df_unique_student_module_presentation.code_module == module) & \
(df_unique_student_module_presentation.code_presentation == presentation) &\
((df_unique_student_module_presentation.date < min_date) | \
(df_unique_student_module_presentation.date > max_date)))]

In [27]: df_unique_student_module_presentation.head()

Out[27]: date code_module code_presentation id_student sum_click
2207538 -25 DDD 2014J 8462 0.0
2207539 -25 DDD 2014J 25572 0.0
2207540 -25 DDD 2014J 27417 0.0
2207541 -25 DDD 2014J 33681 29.0
2207542 -25 DDD 2014J 33796 0.0

Above we can see a data frame were we have assembled all the data we need to preform our
analysis. In the cell below we can choose the module and presentation (when the module started)
we want to examine.

In [28]: module = 'CCC'
presentation = '2014J'

After we have prepared our dataset and selected module and presentation, we can pivot it to
form it to it’s final form, for the principal component analysis (PCA) and K-means.

In [29]: studentvle_pivot = \
df_unique_student_module_presentation[(df_unique_student_module_presentation.\

code_module == module) & (df_unique_student_module_presentation.\
code_presentation == presentation)]

studentvle_pivot = studentvle_pivot[['date', 'id_student', 'sum_click']].\
pivot(index='id_student', columns='date', values='sum_click')

studentvle_pivot.head()

Out[29]: date -18 -17 -16 -15 -14 -13 -12 -11 -10 -9 ... \
id_student ...
23698 4.0 0.0 0.0 0.0 1.0 6.0 0.0 2.0 0.0 77.0 ...
25261 30.0 10.0 8.0 4.0 0.0 0.0 1.0 10.0 0.0 0.0 ...
27116 0.0 0.0 0.0 0.0 0.0 0.0 10.0 0.0 0.0 0.0 ...
28787 0.0 5.0 0.0 0.0 13.0 0.0 0.0 0.0 0.0 0.0 ...

5.4. Are there parallels between the students interactions with course materials and their
understandings of the subject matter? 29

28952 0.0 0.0 0.0 0.0 0.0 0.0 0.0 28.0 0.0 0.0 ...

date 260 261 262 263 264 265 266 267 268 269
id_student
23698 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
25261 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
27116 0.0 0.0 4.0 0.0 0.0 4.0 0.0 4.0 0.0 3.0
28787 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 25.0 0.0
28952 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

[5 rows x 288 columns]

After pivoting, we will preform the principal component analysis to reduce the data frame.

In [30]: from sklearn.decomposition import PCA

n_components = 5
pca = PCA(n_components)
pca.fit(studentvle_pivot)

studentvle_pca = \
pd.DataFrame(pca.transform(studentvle_pivot), \

columns=['PCA%i' % i for i in range(n_components)], \
index=studentvle_pivot.index)

In [31]: studentvle_pca.head()

Out[31]: PCA0 PCA1 PCA2 PCA3 PCA4
id_student
23698 -26.487352 -3.107317 4.325646 -13.751894 -15.049954
25261 -26.048528 1.657808 18.557800 -48.723217 -33.935295
27116 30.375342 -8.535808 11.407198 -18.994751 -27.446637
28787 -43.647153 -4.473007 -1.291867 -11.675472 20.581356
28952 -79.481406 1.407112 0.503242 -5.852509 22.683256

On this reduced data frame we can now apply the K-Means algorithm to find the optimal num-
ber of clusters and to divide the students into them, based on their behavior in the vle.

In [32]: from sklearn.cluster import KMeans
from matplotlib import pyplot as plt

X = studentvle_pca
distorsions = []
for k in range(2, 50):

kmeans = KMeans(n_clusters=k)
kmeans.fit(X)
distorsions.append(kmeans.inertia_)

After calculating the squared errors for each number of clusters between 2 and 50 we can plot
the elbow curve. As we can see below, with every cluster we add the error gets smaller, but the

30 Chapter 5. Jupyter Notebook

decline of the curve gets flatter with every added cluster. In the plot we can read the inflection
point, which lies somewhere around 8. This means that 8 clusters are best to divide our dataset
in cluster with the optimal balance between squared error and number of clusters.

In [33]: fig = plt.figure(figsize=(15, 5))
plt.plot(range(2, 50), distorsions)
plt.grid(True)
plt.title('Elbow curve');

Figure 5.5: Elbow curve for cluster sizes between 2 and 50

In [34]: import numpy as np
n_cluster = 8
km = KMeans(n_cluster, random_state=100).fit(studentvle_pca)

cluster_map = pd.DataFrame()
cluster_map['data_index'] = studentvle_pca.index.values
cluster_map['cluster'] = km.labels_

cluster_map = \
pd.merge(cluster_map, \

assessment_eval[(assessment_eval.code_module == module) &\
(assessment_eval.code_presentation == presentation)], \

left_on= 'data_index', right_on='id_student')
cluster_map['passed'] = np.where(cluster_map.score_exam >= 40, 1, 0)

After grouping the data into the cluster we can start to look into the clusters and examine if
clustering by the online activities resulted in clusters that also have other similarities.

In [35]: results = pd.DataFrame()

for cluster in range(0,n_cluster):
ev = list()
data_tmp = cluster_map[cluster_map.cluster == cluster]

5.4. Are there parallels between the students interactions with course materials and their
understandings of the subject matter? 31

results.loc['size', cluster] = len(data_tmp)
results.loc['rel_size', cluster] = len(data_tmp)/len(cluster_map)
results.loc['mean_score_exam', cluster] = data_tmp.score_exam.mean()
results.loc['mean_score_exercise', cluster] = data_tmp.score_non_exam.mean()
results.loc['overall_mean_score_exam', cluster] = cluster_map.score_exam.mean()
results.loc['mean_score_non_exam', cluster] = data_tmp.score_non_exam.mean()
results.loc['overall_mean_score_non_exam', cluster] = \
cluster_map.score_non_exam.mean()
results.loc['pass_rate', cluster] = data_tmp.passed.mean()
results.loc['overall_pass_rate', cluster] = cluster_map.passed.mean()
results.loc['rel_deviation_from_mean_exam_score', cluster] = \
(data_tmp.score_exam.mean() - cluster_map.score_exam.mean()) * 100 \
/ data_tmp.score_exam.max()
results.loc['rel_deviation_from_mean_exercise_score', cluster] = \
(data_tmp.score_non_exam.mean() - cluster_map.score_non_exam.mean()) * 100 \
/ data_tmp.score_non_exam.max()
results.loc['rel_deviation_from_mean_pass_rate', cluster] = \
(data_tmp.passed.mean() - cluster_map.passed.mean()) *100

The cluster sizes are quite unequal distributed, ranging from one up to 629 students. Also big
differences in mean exam score and mean exercise score between the clusters show up, as well
as differing pass rates. We can conclude from our findings that just with the number of actions per
student per day we were able to find clusters of high performing students as well as students that
might need further assistance to succeed in their academic career.

In [36]: results

Out[36]: 0 1 2 \
size 629.000000 110.000000 1.000000
rel_size 0.538527 0.094178 0.000856
mean_score_exam 66.550079 75.145455 64.000000
mean_score_exercise 529.430843 615.181818 489.000000
overall_mean_score_exam 68.234589 68.234589 68.234589
mean_score_non_exam 529.430843 615.181818 489.000000
overall_mean_score_non_exam 547.501712 547.501712 547.501712
pass_rate 0.850556 0.963636 1.000000
overall_pass_rate 0.872432 0.872432 0.872432
rel_deviation_from_mean_exam_score -1.684510 6.910866 -6.616545
rel_deviation_from_mean_exercise_score -2.270210 8.556271 -11.963540
rel_deviation_from_mean_pass_rate -2.187507 9.120486 12.756849

3 4 5 \
size 13.000000 1.000000 217.000000
rel_size 0.011130 0.000856 0.185788
mean_score_exam 79.230769 40.000000 76.433180
mean_score_exercise 646.230769 225.000000 615.617512
overall_mean_score_exam 68.234589 68.234589 68.234589
mean_score_non_exam 646.230769 225.000000 615.617512

32 Chapter 5. Jupyter Notebook

overall_mean_score_non_exam 547.501712 547.501712 547.501712
pass_rate 1.000000 1.000000 0.940092
overall_pass_rate 0.872432 0.872432 0.872432
rel_deviation_from_mean_exam_score 10.996180 -70.586473 8.198591
rel_deviation_from_mean_exercise_score 12.450070 -143.334094 8.535814
rel_deviation_from_mean_pass_rate 12.756849 12.756849 6.766066

6 7
size 196.000000 1.000000
rel_size 0.167808 0.000856
mean_score_exam 60.244898 44.000000
mean_score_exercise 488.428571 364.000000
overall_mean_score_exam 68.234589 68.234589
mean_score_non_exam 488.428571 364.000000
overall_mean_score_non_exam 547.501712 547.501712
pass_rate 0.806122 1.000000
overall_pass_rate 0.872432 0.872432
rel_deviation_from_mean_exam_score -7.989691 -55.078611
rel_deviation_from_mean_exercise_score -7.477613 -50.412558
rel_deviation_from_mean_pass_rate -6.630906 12.756849

In [37]: results = results.loc[:, results.loc["size"] > 10]

To further examine the cluster we drop the clusters having less than 10 students, as they are
representing outliers, which leaves us with 5 clusters.

In [38]: cluster=results.columns
assesment=['exam score','exercise points', 'pass rate']
pos = np.arange(len(cluster))
bar_width = 0.25
deviation_from_mean_exercise_score=\
list(results.loc['rel_deviation_from_mean_exercise_score'])
deviation_from_mean_exam_score=\
list(results.loc['rel_deviation_from_mean_exam_score'])
pass_deviation=list(results.loc['rel_deviation_from_mean_pass_rate'])

plt.bar(pos,deviation_from_mean_exercise_score,\
bar_width,color='blue',edgecolor='black')

plt.bar(pos+bar_width,deviation_from_mean_exam_score,\
bar_width,color='green',edgecolor='black')

plt.bar(pos+(bar_width*2),pass_deviation,\
bar_width,color='yellow',edgecolor='black')

plt.xticks(pos+bar_width, cluster)
plt.xlabel('cluster', fontsize=16)
plt.ylabel('deviation in %', fontsize=16)
plt.title(('Relative deviation of pass rate, exam and exercise points' + \

'from mean across clusters'),fontsize=18)
plt.legend(assesment,loc=3)

5.4. Are there parallels between the students interactions with course materials and their
understandings of the subject matter? 33

plt.axhline(0, color='black', linestyle='--')
plt.show()

Figure 5.6: Deviation from mean for different clusters

Above we can see a bar chart that shows the relative derivation from the mean for exam
points, exercise points and pass rate for the different clusters. The first thing to notice is that 3
clusters are well above average, one being close to average and one well below average. The two
clusters below average, represent also the fast majority of students (around 70%). To get a better
understanding of the clusters we examine the click rates that led to them.

In [39]: cluster_activity = pd.DataFrame()
for cluster in results.columns:

tmp_df = pd.merge(cluster_map[cluster_map.cluster == cluster],
vle_interactions,
on=['id_student', 'code_module', 'code_presentation'])

activities = tmp_df['activity_type'].value_counts()

for i in activities.index:
cluster_activity.loc[i, cluster] = \
activities[i]/results.loc['size'][cluster]

In [40]: cluster_activity

Out[40]: 0 1 3 5 6
quiz 69.453100 215.527273 545.461538 198.935484 100.469388
homepage 66.740859 112.290909 195.076923 143.188940 78.102041
subpage 56.624801 105.118182 167.307692 117.599078 80.122449
resource 50.184420 78.072727 109.923077 99.336406 63.841837
forumng 34.815580 154.936364 621.538462 269.935484 60.765306
oucontent 25.370429 66.700000 92.846154 74.400922 42.852041
url 6.176471 12.445455 24.769231 15.023041 7.887755
oucollaborate 1.634340 3.509091 3.153846 5.672811 3.489796
page 1.279809 2.163636 3.076923 2.322581 1.576531

34 Chapter 5. Jupyter Notebook

In the table above we have splitted the total clicks of each cluster into the 9 types of content
that were available in this module. Now we will first create a bar chart that shows the mean clicks
per student in a semester of the respected cluster. Following this we will take a look on how the
different clicks were distributed on the different types of content.

In [41]: clicks_per_student_per_cluster = cluster_activity.sum()
clicks_per_student_per_cluster

plt.bar(pos,clicks_per_student_per_cluster,\
bar_width,color='blue',edgecolor='black')

plt.xlabel('cluster', fontsize=16)
plt.ylabel('absolute clicks', fontsize=16)
plt.title('Clicks per student per cluster during semester',fontsize=18)
plt.legend(['clicks per student'],loc=1)
plt.show()

Figure 5.7: Mean click numbers per student per cluster

In [42]: ax = sns.heatmap(cluster_activity.div(cluster_activity.sum(axis=0), axis=1), \
linewidths=.5 ,robust=True ,annot_kws = {'size':14})

ax.tick_params(labelsize=14)
ax.figure.set_size_inches((12, 10))

5.4. Are there parallels between the students interactions with course materials and their
understandings of the subject matter? 35

Figure 5.8: Click distribution on content per cluster

In bar chart we can see that cluster 1 and 5 accumulated more than 750 clicks during the
semester and cluster 3 even over 1500 clicks. The clusters 0 and 6, which perform below average,
only have around 400 clicks per semester. In the heat map we can look closer into the distribution
of the clicks in the clusters. We can see that the high performing clusters spent the most clicks on
forumng and quiz where the clusters 1 and 6 were not so active in the forum. This might indicate,
that more social interaction of students also result in higher success rates.

Conclusion

With the principal component analysis in combination with K-means we could divide students into
different clusters with different chances of succeeding a module by analyzing their behavior on the
virtual learning environment. We could distinguish the clusters into 3 main types average, below
and above average where the average group is made up of cluster 0 with 629 students, group
above average consists of the clusters 1, 3 and 5 with a total of 340 students and the group below
average gets covered by the cluster 6 with 196 students. From the data we have descried we can
conclude that the distribution of clicks over the semester seems to be a good estimator if a student
is doing well in their semester.

36 Chapter 5. Jupyter Notebook

5.5 How far in advance can we predict which students are likely to fail
their final exam?

To allocate students that need more help to pass the final exam as early as possible, we need
to build a machine learning model that can predict the outcome of a students final exam with a
limited amount of data. To simulate a limited amount of data we will aggregate the data how it
would have looked like at x days (x being between -20 and 240) into the semester. When we take
look at our data set we can see that we have data that is already available at the beginning of the
semester. This data consist of the students demografic data like age, place of residence and sex
as well as data that was gathered during previous semesters like the number of previous attempts
the student took to pass a module or how much credit points he already has. Data that is not
available at the start of the semester are for example the clicks the student will generate during
the semester and his exercise points. We will start by creating a data frame that has one line
for every unique id_student, code_module, code_presentation, date combination. In the previous
chapter we have used already a data frame with the same porperties. So we just need to copy the
data frame df_unique_student_module_presentation.

In [43]: df_timeseries = \
df_unique_student_module_presentation\
[df_unique_student_module_presentation.date <= 240]
df_timeseries.head()

Out[43]: date code_module code_presentation id_student sum_click
2207538 -25 DDD 2014J 8462 0.0
2207539 -25 DDD 2014J 25572 0.0
2207540 -25 DDD 2014J 27417 0.0
2207541 -25 DDD 2014J 33681 29.0
2207542 -25 DDD 2014J 33796 0.0

Next we construct a data frame of all the non exam assessments in the data set to join it with
our timeseries data frame.

In [44]: non_exam_assesments_to_date = \
pd.merge(assessments[(assessments.assessment_type != 'Exam') & \

(assessments.date <= 240)], studentAssessment, \
on='id_assessment')

non_exam_assesments_to_date.head()

Out[44]: code_module code_presentation id_assessment assessment_type date weight \
0 AAA 2013J 1752 TMA 19.0 10.0
1 AAA 2013J 1752 TMA 19.0 10.0
2 AAA 2013J 1752 TMA 19.0 10.0
3 AAA 2013J 1752 TMA 19.0 10.0
4 AAA 2013J 1752 TMA 19.0 10.0

id_student date_submitted is_banked score
0 11391 18 0 78.0
1 28400 22 0 70.0

5.5. How far in advance can we predict which students are destined to fail their final exam? 37

2 31604 17 0 72.0
3 32885 26 0 69.0
4 38053 19 0 79.0

In [45]: df_timeseries = \
pd.merge(df_timeseries, \

non_exam_assesments_to_date[['date', 'id_student', 'code_module', \
'code_presentation', 'score']], \

on=['id_student', 'code_module', 'code_presentation', 'date'], how='left')
df_timeseries['score'] = df_timeseries['score'].fillna(0)

After we have successfully joined the two data sets we can calculate the cumulative sum of
the exercise points and the clicks. This means that in the new rows exercise_score_cumsum and
sum_click_cumsum are all the previous values from score and sum_click added to this day.

In [46]: df_timeseries['exercise_score_cumsum'] = \
df_timeseries.groupby(['id_student', 'code_presentation', 'code_module'])\
['score'].transform(pd.Series.cumsum).fillna(0)
df_timeseries['sum_click_cumsum'] = \
df_timeseries.groupby(['id_student', 'code_presentation', 'code_module'])\
['sum_click'].transform(pd.Series.cumsum)

In [47]: df_timeseries.head()

Out[47]: date code_module code_presentation id_student sum_click score \
0 -25 DDD 2014J 8462 0.0 0.0
1 -25 DDD 2014J 25572 0.0 0.0
2 -25 DDD 2014J 27417 0.0 0.0
3 -25 DDD 2014J 33681 29.0 0.0
4 -25 DDD 2014J 33796 0.0 0.0

exercise_score_cumsum sum_click_cumsum
0 0.0 0.0
1 0.0 0.0
2 0.0 0.0
3 0.0 29.0
4 0.0 0.0

The data frame above now contains all the information, that can change on a daily basis. In
the next step we will merge it with the data that stays consistent over the semester.

In [48]: df_timeseries = \
pd.merge(df_timeseries, studentInfo[(studentInfo.final_result == 'Fail') | \

(studentInfo.final_result == 'Pass')], \
on=['id_student', 'code_module', 'code_presentation'])

tmp_module = df_timeseries['code_module'].copy()
tmp_presentation = df_timeseries['code_presentation'].copy()
df_timeseries = pd.get_dummies(df_timeseries, columns =\

['gender', 'region', 'highest_education', \

38 Chapter 5. Jupyter Notebook

'imd_band', 'age_band', 'disability', \
'code_module', 'code_presentation'])

del df_timeseries['final_result']
df_timeseries['code_module'] = tmp_module
df_timeseries['code_presentation'] = tmp_presentation
df_timeseries.head()

Out[48]: date id_student sum_click score exercise_score_cumsum \
0 -25 33681 29.0 0.0 0.0
1 -24 33681 0.0 0.0 0.0
2 -23 33681 0.0 0.0 0.0
3 -22 33681 0.0 0.0 0.0
4 -21 33681 0.0 0.0 0.0

sum_click_cumsum num_of_prev_attempts studied_credits gender_F \
0 29.0 3 60 0
1 29.0 3 60 0
2 29.0 3 60 0
3 29.0 3 60 0
4 29.0 3 60 0

gender_M ... code_module_DDD code_module_EEE code_module_FFF \
0 1 ... 1 0 0
1 1 ... 1 0 0
2 1 ... 1 0 0
3 1 ... 1 0 0
4 1 ... 1 0 0

code_module_GGG code_presentation_2013B code_presentation_2013J \
0 0 0 0
1 0 0 0
2 0 0 0
3 0 0 0
4 0 0 0

code_presentation_2014B code_presentation_2014J code_module \
0 0 1 DDD
1 0 1 DDD
2 0 1 DDD
3 0 1 DDD
4 0 1 DDD

code_presentation
0 2014J
1 2014J
2 2014J
3 2014J
4 2014J

5.5. How far in advance can we predict which students are destined to fail their final exam? 39

[5 rows x 56 columns]

Now we have joined the consistent data to the timeseries data. To make labeled data like
gender readable for a machine learning algorithm, we had to one-hot-encode them. This means
that every label gets its own column with a binary value, where 1 stands for student has this label
and 0 for not having the label. Next we have to join the target variable to the data frame and
replace Pass with 1 and Fail with 0.

In [49]: df_tmp = \
studentInfo[(studentInfo.final_result == 'Fail') | \

(studentInfo.final_result == 'Pass')]\
[['id_student', 'code_module', 'code_presentation', 'final_result']]
df_tmp['final_result'] = \
np.where(df_tmp['final_result'] == 'Fail', int(0), int(1))
df_timeseries = pd.merge(df_timeseries, df_tmp, \

on=['id_student', 'code_module', 'code_presentation'], \
how='left')

Finally we are done with manipulating the OULAD into a timeseries data stream. We have
reconstructed on a day to day basis what a Docent would have known at the specified days into
the semester to put us onto the same information base to guarantee that our findings can be
replicated and applied to the real world. In the following steps we can now finally try to predict the
final exam results for students. We will limit our data set onto different stages of the semester to
simulate forecasting at the respective times during the semester.

In [50]: input_variables = ['exercise_score_cumsum',
'sum_click_cumsum', 'gender_F', 'gender_M',
'num_of_prev_attempts', 'studied_credits', 'region_East Anglian Region',
'region_East Midlands Region', 'region_Ireland', 'region_London Region',
'region_North Region', 'region_North Western Region', 'region_Scotland',
'region_South East Region', 'region_South Region',
'region_South West Region', 'region_Wales',
'region_West Midlands Region', 'region_Yorkshire Region',
'highest_education_A Level or Equivalent',
'highest_education_HE Qualification',
'highest_education_Lower Than A Level',
'highest_education_No Formal quals',
'highest_education_Post Graduate Qualification', 'imd_band_0-10%',
'imd_band_10-20', 'imd_band_20-30%', 'imd_band_30-40%',
'imd_band_40-50%', 'imd_band_50-60%', 'imd_band_60-70%',
'imd_band_70-80%', 'imd_band_80-90%', 'imd_band_90-100%',
'age_band_0-35', 'age_band_35-55', 'age_band_55<=', 'disability_N',
'disability_Y', 'code_module_AAA', 'code_module_BBB', 'code_module_CCC',
'code_module_DDD', 'code_module_EEE', 'code_module_FFF',
'code_module_GGG', 'code_presentation_2013B', 'code_presentation_2013J',
'code_presentation_2014B', 'code_presentation_2014J']

target_variable = ['final_result']

40 Chapter 5. Jupyter Notebook

After dividing the different variables into input and target variable we import two different clas-
sifiers, KNeighborsClassifier and DecisionTreeClassifier. The KNN algorithm is a quite simple
algorithm, that places all data points in an m-dimensional space (m being the number of input
variables). To make a prediction it looks up the most prevalent target variable of the K nearest
neighbors of the data point to predict and forecasts this target variable. The decision tree tries to
divide the data set by binary questions that have the highest information gain. The benefit of this
approach is, that we can also have a look into the decision making and what variables are more
decisive than others.

In [51]: from sklearn.preprocessing import Imputer
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score
from sklearn.tree import DecisionTreeClassifier
from sklearn.dummy import DummyClassifier
from sklearn.preprocessing import StandardScaler

The first for loop will iterate over the days we want to predict. We start at 20 days before
the modules have started and finish 240 days after the modules have started. In each iteration
we divide the data set in a training set and a test set, where the training set consists of 70 %
of the available data, and the test set of the remaining 30 %. With the KNN we will iterate also
over the amount of neighbors, starting at 1 up to 50. For both algorithms we will save the best
result in best_score_knn and best_score_decision_tree. When classifying the decision tree we
will also save the feature importance to see which variables are more or less decisive and how
these changes over time.

In [52]: eval_feature_importance = pd.DataFrame()
eval_feature_importance['feature_names'] = input_variables
best_score_knn = list()
best_score_decision_tree = list()
best_score_dummy = list()
for day in range(-20,250,10):

prepare data for information base on day 'day'
X = df_timeseries[df_timeseries.date==day][input_variables].values
Y = df_timeseries[df_timeseries.date==day][target_variable].values
Y = Y.ravel()
X_train, X_test, y_train, y_test = \
train_test_split(X, Y, test_size = 0.3, random_state = 100)
tmp_best_score = list()
KNN Classifier
for K in range(50):

K_value = K+1
neigh = \
KNeighborsClassifier(n_neighbors = K_value, weights='uniform', \

algorithm='auto', n_jobs=-1)
neigh.fit(X_train, y_train)
y_pred = neigh.predict(X_test)
tmp_best_score.append(accuracy_score(y_test,y_pred))

5.5. How far in advance can we predict which students are destined to fail their final exam? 41

best_score_knn.append(max(tmp_best_score))
Decision Tree Classifier
dtree = DecisionTreeClassifier()
dtree.fit(X_train, y_train)
y_pred = dtree.predict(X_test)
best_score_decision_tree.append(accuracy_score(y_test,y_pred))
eval_feature_importance[('data_till_day_' + str(day))] = \
dtree.feature_importances_
Dummy Classifier
dummy = DummyClassifier()
dummy.fit(X_train, y_train)
y_pred = dummy.predict(X_test)
best_score_dummy.append(accuracy_score(y_test,y_pred))

After running the machine learning algorithms we plot the accuracy of both algorithms and
see that the KNN always outperforms the Decision Tree. We can also read from the chart how
both algorithms improve over time. This means that as the semester progresses, variables like
exercise_score_cumsum become more important to predict if a student will pass this semester.
With a pass rate around 55 % in the data set, measured over all modules, a random algorithm
based on the distribution of fails and passes would produce an accuracy of also 55 %. From
the plot below we can read, that with the KNN algorithm we achieve better results right from the
beginning

42 Chapter 5. Jupyter Notebook

In [53]: knn = plt.plot(best_score_knn, color='blue', label='KNN')
decision_tree = plt.plot(best_score_decision_tree, \

color='red', label='Decision Tree')
dummy = plt.plot(best_score_dummy, color='green', label='Dummy Classifier')
plt.legend()
plt.xlabel('Days since modul start')
plt.ylabel('Accuracy in percent')
plt.title('Accuracy comparison of the Knn and Decision Tree Algorithm over time',\

fontsize=18)
ax = plt.gca()
ax.set_xticks(range(0,27,2))
ax.set_xticklabels(range(-20,250,20));

Figure 5.9: Accuracy history over time

Now we want to take a look into the feature importance. Since we saved all the data during the
calculation of the classifiers into the data frame eval_feature_importance we can plot the data as
a heat map easily. What stands out are the two most important variables exercise_score_cumsum
and sum_click_cumsum. We can also see that in the beginning the clicks are more important than
the exercise scores, but this changes around 2 months after semester start.

In [54]: plt.figure(figsize=(15, 15))
sns.heatmap(eval_feature_importance.set_index('feature_names'));

5.5. How far in advance can we predict which students are destined to fail their final exam? 43

Figure 5.10: Feature importance over time

Conclusion

After 100 days into the semester we can already predict with over 70 % accuracy which students
will fail and could therefore provide them with more intensive courses that could cater their needs
more to help them to pass their final exam. We could also prove again like in 5.3 Is there a
relationship between higher exercise points and higher final grades that exercise points play a
vital role in learning analytics and have a strong connection to a students success.

44 Chapter 5. Jupyter Notebook

6 Conclusion

This chapter provides a summary by recapitulating the findings that have been made when
answering the research questions

6.1 Summary
In chapter 2 the research object, the Open University Learning Analytics dataset, was pre-
sented. The chapter showed the structure of a Learning Analytics data set and the limitations
that came with it because it needed to be anonymized to make it publicly available. Further-
more we outlined how a data set like the OULAD could look like for the Goethe University to
make advanced analytic methods possible.

Next we took a look into other research that is centered around the data set and showed what
approach others took with the OULAD and how this thesis contributes to their work.
After that the machine learning algorithms that were used in the Jupyter Notebook were
introduced. We showed what kind of data these algorithms need, what kind of problems they
can solve and how they are solving these questions.

In Chapter 5 the research questions were answered by examining the data set with the
programming language Python in the integrated development environment Jupyter Notebook.
The findings provided by the Jupyter Notebook can play an essential part in how students will
study in the future. With these better thought-out learning paths for students can be designed
and help can offered on a more fine grained scale

6.2 Result
Although there has been extensive research on the Open University Learning Analytics Dataset
we could still discover new and relevant topics, like how the importance of variables change over
the course of the semester when predicting fails and passes. The feature importance gathered
from the Decision Tree algorithm in chapter 5.4 over the duration of the semester shows impres-
sively the shift from click rates to exercise sum one to two months into the semester. Although
the KNN in this chapter showed that already after 60 days into a semester an accuracy of 75%
could e achieved.
Furthermore the importance of the distribution of clicks on the different types of content was
proven in chapter 5.3 showing that outperforming students interact more with each other on the
forum than low performing students.
A strong link between exercise points and the result of the students in their final exam could be

45

46 Chapter 6. Conclusion

discovered as well, showing how great the impact of exercises on a student’s understanding of
a subject is. This can also be seen in the feature importance of the prediction model in chapter
5.4.

7 Outlook

The presented algorithms in chapter 5.4 can be further improved by engineering more features.
For example could the clusters of chapter 5.3 be used as features. This would require to
calculate the clusters for each new day into the semester new, which is very computation
intensive. Also, a bigger data set is needed to provide a true train and test data set. The new
train data set should consist entirely of predecessing semesters to the test data set to ensure
that the data that is provided to the model could also be available in reality.

A big part of this thesis focused on finding students that are low performing and are
having trouble to pass the final exam. The next step would be to try to distinguish the students
that are genuinely trying to succeed by studying a lot from other students to better allocate
valuable teaching resources.

47

8 Glossary

datframe a pandas object that can store data
exercise_score_cumsum cumulative sum of exercise points
final exam score score of a student in his final exam
matplotlib a open source library to plot data
pandas an open source library that helps to handle and manipulate data
PCA Principal component analysis; combines two variables that correlate

with each other to one new component
PPMCC Pearson product-moment correlation coefficient; a way to meassure

the correlation between two variables
regression line line that best fits the trend of a data set
score exercises the sum of all exercise points per semester per student
score final exam score of the final exam
score_exam variable that holds the final exam score
score_non_exam variable that holds the sum of all exercises per semester per student
sum_click_cumsum cumulative sum of the number of clicks in the VLE
time of enrolment when a student enrolled into a course relative to semester start

49

List of Figures

2.1 Data base schema 4

4.1 K nearest neighbors with K = 4 and 2 variables x and y 10
4.2 K-Means with K = 2 and two variables x and y 11

5.1 Regression between score exercise and score final exam 21
5.2 Regression between score exercise and score final exam for module CCC 23
5.3 Regression between score exercise and score final exam for module DDD 24
5.4 Regression between score exercise and score final exam for module DDD 25

by semester separated
5.5 Elbow curve for cluster sizes between 2 and 50 31
5.6 Deviation from mean for different clusters 34
5.7 Mean click numbers per student per cluster 35
5.8 Click distribution on content per cluster 37
5.9 Accuracy history over time 43
5.10 Feature importance over time 44

51

Bibliography

[1] Q. Nguyen, M.Huptych, and B. Rienties. 2018. Linking students’ timing of engagement to
learning design and academic performance. In: LAK’18:
International Conference on Learning Analytics and Knowledge,
March 7–9, 2018, Sydney, NSW, Australia. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3170358.3170398

[2] Greller, W., & Drachsler, H. (2012). Translating Learning into Numbers:
A Generic Framework for Learning Analytics. Educational Technology & Society, 15 (3), 42–57.

[3] Kuzilek, J. et al. Open University Learning Analytics dataset.
Sci. Data 4:170171 doi: 10.1038/sdata.2017.171 (2017)

[4] H. Heuer, and A. Breiter. 2018. Student Success Prediction and the Trade-Off
between Big Data and Data Minimization. In: Die 16. E-Learning Fachtagung Informatik,
Bonn 2018, 12 pages.

[5] Jha, Nikhil, Ghergulescu, Ioana and Moldovan, Arghir-Nicolae (2019)
OULAD MOOC Dropout and Result Prediction using Ensemble, Deep Learning and
Regression Techniques. In: Proceedings of the 11th International Conference
on Computer Supported Education - Volume 2:
CSEDU. SciTePress, pp. 154-164. ISBN 9789897583674

[6] Pedregosa et al. Scikit-learn: Machine Learning in Python, JMLR 12, pp. 2825-2830, 201
[7] Wes McKinney. Data Structures for Statistical Computing in Python,

Proceedings of the 9th Python in Science Conference, 51-56 (2010)
[8] Stéfan van der Walt, S. Chris Colbert and Gaël Varoquaux.

The NumPy Array: A Structure for Efficient Numerical Computation,
Computing in Science & Engineering, 13, 22-30 (2011), DOI:10.1109/MCSE.2011.37

[9] Michael Waskom, Olga Botvinnik, Paul Hobson, John B. Cole, Yaroslav Halchenko,
Stephan Hoyer, Alistair Miles, et al.
“Seaborn: V0.5.0 (november 2014)”. Zenodo, November 14, 2014. doi:10.5281/zenodo.12710

[10] J. D. Hunter, "Matplotlib: A 2D Graphics Environment",
Computing in Science & Engineering, vol. 9, no. 3, pp. 90-95, 2007

53

